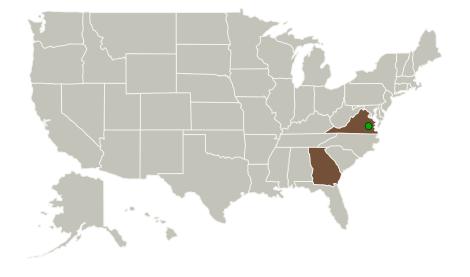
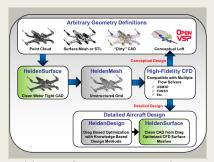
HeldenSurface: A CAD Tool to Generate High-Quality Surfaces, Phase




Completed Technology Project (2017 - 2017)

Project Introduction

One of the primary shortcomings identified during the NASA sponsored CFD Vision 2030 Study conducted during 2012-2014 was that the generation of meshes suitable for CFD simulations constitutes a principal bottleneck in the workflow process as it requires significant human intervention. CAD simplification and cleanup is one of the most user-intensive steps of the CFD mesh generation process and it is also one of the areas with the least amount of research taking place. The successful completion of this Phase I effort results in a validated method (HeldenSurface) for automatically converting arbitrary geometries (such as a cloud of points, "dirty" CAD, or CFD meshes) into a collection of watertight CAD surfaces that are smooth, connected, and split into as few number of surfaces as possible. This represents a critical capability needed to automate the CFD mesh generation process, which is the primary bottleneck in the application of CFD. The development of HeldenSurface would permit the thousands of engineers performing CFD to focus their energies on interpreting results instead of generating meshes.

Primary U.S. Work Locations and Key Partners

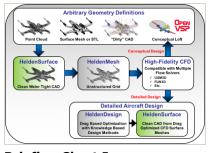
HeldenSurface: A CAD Tool to Generate High-Quality Surfaces, Phase I Briefing Chart Image

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3

Small Business Innovation Research/Small Business Tech Transfer

HeldenSurface: A CAD Tool to Generate High-Quality Surfaces, Phase



Completed Technology Project (2017 - 2017)

Organizations Performing Work	Role	Туре	Location
Helden Aerospace	Lead	Industry	Acworth,
Corporation	Organization		Georgia
Langley Research	Supporting	NASA	Hampton,
Center(LaRC)	Organization	Center	Virginia

Primary U.S. Work Locations	
Georgia	Virginia

Images

Briefing Chart Image

HeldenSurface: A CAD Tool to Generate High-Quality Surfaces, Phase I Briefing Chart Image (https://techport.nasa.gov/imag e/135079)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Helden Aerospace Corporation

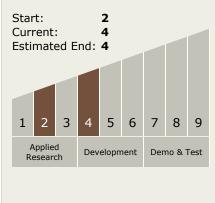
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

John Hooker

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

HeldenSurface: A CAD Tool to Generate High-Quality Surfaces, Phase

Completed Technology Project (2017 - 2017)

Technology Areas

Primary:

- TX09 Entry, Descent, and Landing
 - └ TX09.4 Vehicle Systems
 - └ TX09.4.5 Modeling and Simulation for EDL

